Climate Solution Methods


   Search Words:   Any:     All:         
Advanced Search
(Click a down arrow to see a short description of the method or click on the method in a colored cell to see a detailed description of the method.)
ScoreMethodsReferences
69Seatomisers/ISA

Floating Seatomiser masts use wind turbine energy to spray seawater droplets of specific size ranges into the lower troposphere. Commercial spray nozzles are modified to work at higher tri-phasic pressures and to produce droplets for different purposes: coarse and medium sized ones to humidify air at different wind speeds, and baffle-conditioned, fine ones from flat fan spray nozzles to generate evaporating droplets that nucleate marine cloud and/or create sea salt aerosols (SSA).
View
NeedText
NeedText
NeedText
NeedText
NeedText
NeedText
NeedText
NeedText
NeedText
NeedText
NeedText
NeedText
Develop-
ment Status
Net Cooling Status Net Carbon Status Feasib-
ility
Effect-
iveness
Scal-
ability
Time-
liness
Gating/ Reversi-
bility
Risk Gover-
nance & Social Accept-
ance
Cost SCORE, sum D:L
3 3 3 3 9 9 9 9 9 9 3 69
This resembles the commonly-used Technical Readiness Level (TRL) classification system, but has three levels, not nine. Moreover, as it will typically include the consideration of several technologies, concepts and information thought useful for the Method, these are rolled into a single, overall measure of technical readiness.
This provides an indication of what is the individual Method’s potential contribution to global cooling at its maximum feasible scale. Its typical measurement unit would be negative watts per square metre (-W/m2).
This roughly coincides with the number of gigatonnes of carbon (GtC/yr) that the Method could be expected to sequester at its maximum scale, from the atmosphere, for a period equal to or greater than a century. GtC for a fraction of a century are reduced by that fraction. For simplicity, the criterion omits consideration of other important greenhouse gases (such as methane) and airborne particulates. A red score indicates a value <1, yellow 1-5, green >5 GtC/yr.
This is a composite measure indicating how achievable is the negative Net Radiative Forcing (equals Global Cooling) that combines the effects of Solar Radiation Management (SRM), or Earthly albedo enhancement, and Thermal Radiation Management (TRM) measures designed to increase heat (long wave) radiation off-planet when the Method is deployed at maximum feasible scale. Where quantitative estimates or surrogates are unavailable, qualitative estimates are made.
This is the likely Cost-Effectiveness of the Method. When it can be quantified, it is an estimate of the current US dollar cost per negative watts per square metre ($/(-W/m2)) or the Net Negative Radiative Forcing of all the cooling effects of the Method, wherever they occur on the planet above the base of the marine mixed layer. Provisionally, Red might be >$10a, Yellow $1-10a, and Green <$1a/(-W/m2), where “a” is an appropriate factor changed to reflect the actual likely range of costs. If not readily quantified, then qualitative estimates or guesses are to be made.
Scalability has several different parameters or components, any of which may be or become limiting. One component of scalability is the proportion of the world’s surface or volume that can be used to deploy it. A second is whether there is/could be sufficient raw materials/chemicals, concentrations, available energy, temperature, pressure, space or habitat, and manufacturing capability to deploy it at optimum scale in a useful timeframe. A third is whether the species, diversity and biomass of them are, or could be made sufficient, and sufficiently capable, to carry out their part in the Method. This includes humanity, its robotic helpers, laws/regulations, agreements/conventions, finances, and politicosocioeconomic practices. A fourth is whether there is, or could be constructed, whatever is required in the way of software, AI/algorithms, datastores, supporting technologies, and communications necessary for optimal scalability. A fifth is a requirement for modicum of peace&security, health, civil order, and cooperation needed for the scalability to be achieved and maintained, together with limits to food, environmental and social stresses in key populations.
This relates to how quickly the Method could be researched, developed, deployed globally, and take substantial effect - noting that many Methods will typically have some effects, both positive and negative, that are delayed by years or longer. Initially, and for a crash or moonshot program (though with existential urgency, funding, and possibly widespread participation), a Green score might have a strongly, net beneficial effect by the deployed Method occurring in <5 years, Yellow in 5-25 years, and Red in >25 years. GATING/REVERSIBILITY: Gating is whether the Method can be tested at increasing scale, whilst learning by doing to address adverse effects or cost. Reversibility relates to whether, and how quickly, a trial can be stopped and/or its effects reversed. Reversibility might be scored thus. Major adverse effects cease or substantially decline within: Green <1 month, Yellow 1- 12 months, Red >1 year.
Gating is whether the Method can be tested at increasing scale, whilst learning by doing to address adverse effects or cost. Reversibility relates to whether, and how quickly, a trial can be stopped and/or its effects reversed. Reversibility might be scored thus. Major adverse effects cease or substantially decline within: Green <1 month, Yellow 1- 12 months, Red >1 year.
Risk is used in the Risk Management or risk impact assessment sense of being compared to what would be likely to happen without the intervention. It deals with probabilities and consequences of risk events if they are realised. It compares the products of the likelihood of the risk occurring within a given time (meaning perhaps millennia for climate risks) and its impact. As climate risk is now an existential one that is now happening, our interest lies in determining quickly which Methods have acceptable risks and ones which do not risk the social acceptance of most other interventions. Green means start gated testing urgently now, Yellow means seek ways to reduce likely adverse aspects, Red means research now, but do not deploy more widely unless equivalent Methods are insufficiently effective at cooling.
This refers to the likelihood that existing forms of governance can be enhanced to satisfy the bulk of the global community of the necessity to deploy the more prospective of the Methods, first at local, then national and then international levels. Extensive community engagement is likely to be required, following proof of concept, and explanations of its likely costs, opportunities and effects. Green = (eventually) potentially acceptable and with little downside, Yellow = has some modest downsides, most of which can be offset. Red = social acceptance is unlikely unless other, comparable Methods fail.
As the Effectiveness criterion refers to the developed and globally-scaled cost of direct cooling by the Method in question, this Cost refers more to the RD&D and capital costs of researching, then deploying it at different scales and in different variants, together with the costs of Measuring, Reporting and Verifying (MRV) the results of using the Method, probably by independent bodies. It also includes insurance and recompense costs and the likely cleanup costs afterwards, together with reductions for any revenues gained, including possible carbon and cooling credits, should they eventuate. Green = likely to be profitable, Yellow = requires modest subsidies for industry and NGO participation, Red = would require extensive and ongoing public subsidy. Source TBD.
A summation of the above scores, using Red = 1, Yellow = 3, and Green = 9. Total possible = 99.
Short DescriptionFloating Seatomiser masts use wind turbine energy to spray seawater droplets of specific size ranges into the lower troposphere. Commercial spray nozzles are modified to work at higher tri-phasic pressures and to produce droplets for different purposes: coarse and medium sized ones to humidify air at different wind speeds, and baffle-conditioned, fine ones from flat fan spray nozzles to generate evaporating droplets that nucleate marine cloud and/or create sea salt aerosols (SSA).
DescriptionModestly sized, anchored, wind turbines could be used to power mastlike units that spray filtered seawater of different particle size ranges into the lower atmosphere. The two, lower spray nozzle assemblies are designed to spray droplets that partially evaporate to form cooler, moisture- saturated air and brine droplets that fall back into the sea before they reach land. The upper spray assembly sprays finer droplets using higher, triphasic pressures. The evaporating droplets are then winnowed cyclonically to desirable diameters by baffles to form optimally-sized droplets for cloud nucleation or sea salt aerosols (SSA). Both types tend to stay aloft for days, whilst reflecting sunlight that cools the air, soil, water and vegetation below. Their small size makes them capable of being lofted to cloud-making altitude by turbulence, where they may form marine cloud and eventually precipitation far downwind. Should such tiny salt crystals nucleate raindrops downwind, dilution causes the resulting water typically to be purer than river water and therefore not harmful should they fall on land. Their size may be changed by changing the pressures at which they are generated. This and downwind weather forecasts can be combined to influence where the precipitation occurs, its form and intensity. Anchored in deeper waters, arrays of Seatomiser units should be able to have significant regional cooling effects: on the warm ocean surface currents that power extreme weather events, on ocean stratification, on sea ice and on methane clathrate melting. The main effect is to increase the rate of evaporation of seawater and the subsequent long wave radiation of its released vapour heat content, on condensation, into space - mainly at night. As the method should increase ocean evaporation by orders of magnitude, so would the heat flow released by the condensing precipitation increase off-planet thermal radiation. A recent extension of this technology would allow for Oeste's iron salt aerosols (ISA) of ferric chloride to be sublimated into the atmosphere by heated crucibles at the topmost spar level. The chlorine atoms/radicals released by this would then catalytically photo-oxidise atmospheric methane and smog, reducing their global warming effect. Land-based Seatomisers might also be used for heat stress, smog and methane control, as well as for rainmaking and snowpack thickening.
Key FunctionsRegional cooling through sea fog and marine cloud formation & brightening and SSA reflection; increasing thermal radiation off-planet; protecting coral reefs, seagrass meadows, kelp forests, mangroves and shellfish beds; fishery and aquaculture enhancement; mitigating the effects of extreme weather events such as wildfire, drought, flood, storm damage and hurricane; reducing heat stress; reducing atmospheric methane and smog; oxygenation and cooling of surface waters; beneficially influencing precipitation, including reclaiming coastal deserts, farmlands and drought-stricken areas, together with increasing water stores, snowpack and aquifers. When not required for spraying, the power could be delivered onshore.
Innovation DependenciesSuccessful modification of commercial spray nozzles to operate at much higher pressures and hence producing smaller droplet sizes. ISA sublimation that generates effective, photocatalytic nanoparticles.
QuantificationSeatomisers are designed for several purposes: to enhance the evaporation of seawater and the off-planet, long wave radiation the extra water vapour provides as it condenses around cloud-making altitude; to generate reflective, if short-lived fog; to increase marine cloud formation and thickening such that Earth’s albedo and its cooling effects are increased; to release reflective sea salt aerosols into the atmosphere; to sublimate nanoparticles of ferric chloride into the atmosphere (above the sprayed seawater droplets) such that by photocatalysis they photo-oxidise atmospheric methane and smog into less-harmful water and CO2; and, by taking account of weather forecasts and farmers’ needs, and by controlling the seawater spray droplet size distribution and rate of production to influence where, when and how much precipitation occurs downwind. None of these effects, or other ones, can be reliably estimated, even to an order of magnitude, without there being proper experimentation, development and modelling. However, as Salter has estimated that the energy cost of generating cloud condensation nuclei (CCN) from seawater is some nine orders of magnitude less than the solar energy it would reflect when airborne for a few days, the trade-off is likely to be an excellent one even if none of the other benefits are considered.
Graphics:
(Click on image to enlarge it.)
TechnologyEffectsProjects
Carbon Dioxide Removal (CDR)
Convection
Marine Cloud Brightening (MCB)
Methane removal
Precipitation Control
(Need text)
(Need text)
Spraying tiny saltwater droplets into low-lying marine clouds to increase their reflectivity, which can also help cool the planet.
(Need text)
(Need text)
Minor potential to increase ocean flotsam
(need text)
CCR?
Seatomiser units use floating wind turbine power and modified, commercial misting, triphasic nozzles to pump sea water microdroplets into the air to evaporate, humidify, form reflective sea fog and sea salt aerosols (SSA), nucleate marine cloud, influence downwind precipitation, and to photocatalytically destroy airborne methane and smog using Oeste's ISA technology.
Comments/Questions (0)
Email:
Add
Comment:
Comments/Questions (0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Floating Seatomiser masts use wind turbine energy to spray seawater droplets of specific size ranges into the lower troposphere. Commercial spray nozzles are modified to work at higher tri-phasic pressures and to produce droplets for different purposes: coarse and medium sized ones to humidify air at different wind speeds, and baffle-conditioned, fine ones from flat fan spray nozzles to generate evaporating droplets that nucleate marine cloud and/or create sea salt aerosols (SSA).
NeedText
NeedText
NeedText
NeedText
NeedText
NeedText
NeedText
NeedText
NeedText
NeedText
NeedText
NeedText
Develop-
ment Status
Net Cooling Status Net Carbon Status Feasib-
ility
Effect-
iveness
Scal-
ability
Time-
liness
Gating/ Reversi-
bility
Risk Gover-
nance & Social Accept-
ance
Cost SCORE, sum D:L
3 3 3 3 9 9 9 9 9 9 3 69
This resembles the commonly-used Technical Readiness Level (TRL) classification system, but has three levels, not nine. Moreover, as it will typically include the consideration of several technologies, concepts and information thought useful for the Method, these are rolled into a single, overall measure of technical readiness.
This provides an indication of what is the individual Method’s potential contribution to global cooling at its maximum feasible scale. Its typical measurement unit would be negative watts per square metre (-W/m2).
This roughly coincides with the number of gigatonnes of carbon (GtC/yr) that the Method could be expected to sequester at its maximum scale, from the atmosphere, for a period equal to or greater than a century. GtC for a fraction of a century are reduced by that fraction. For simplicity, the criterion omits consideration of other important greenhouse gases (such as methane) and airborne particulates. A red score indicates a value <1, yellow 1-5, green >5 GtC/yr.
This is a composite measure indicating how achievable is the negative Net Radiative Forcing (equals Global Cooling) that combines the effects of Solar Radiation Management (SRM), or Earthly albedo enhancement, and Thermal Radiation Management (TRM) measures designed to increase heat (long wave) radiation off-planet when the Method is deployed at maximum feasible scale. Where quantitative estimates or surrogates are unavailable, qualitative estimates are made.
This is the likely Cost-Effectiveness of the Method. When it can be quantified, it is an estimate of the current US dollar cost per negative watts per square metre ($/(-W/m2)) or the Net Negative Radiative Forcing of all the cooling effects of the Method, wherever they occur on the planet above the base of the marine mixed layer. Provisionally, Red might be >$10a, Yellow $1-10a, and Green <$1a/(-W/m2), where “a” is an appropriate factor changed to reflect the actual likely range of costs. If not readily quantified, then qualitative estimates or guesses are to be made.
Scalability has several different parameters or components, any of which may be or become limiting. One component of scalability is the proportion of the world’s surface or volume that can be used to deploy it. A second is whether there is/could be sufficient raw materials/chemicals, concentrations, available energy, temperature, pressure, space or habitat, and manufacturing capability to deploy it at optimum scale in a useful timeframe. A third is whether the species, diversity and biomass of them are, or could be made sufficient, and sufficiently capable, to carry out their part in the Method. This includes humanity, its robotic helpers, laws/regulations, agreements/conventions, finances, and politicosocioeconomic practices. A fourth is whether there is, or could be constructed, whatever is required in the way of software, AI/algorithms, datastores, supporting technologies, and communications necessary for optimal scalability. A fifth is a requirement for modicum of peace&security, health, civil order, and cooperation needed for the scalability to be achieved and maintained, together with limits to food, environmental and social stresses in key populations.
This relates to how quickly the Method could be researched, developed, deployed globally, and take substantial effect - noting that many Methods will typically have some effects, both positive and negative, that are delayed by years or longer. Initially, and for a crash or moonshot program (though with existential urgency, funding, and possibly widespread participation), a Green score might have a strongly, net beneficial effect by the deployed Method occurring in <5 years, Yellow in 5-25 years, and Red in >25 years. GATING/REVERSIBILITY: Gating is whether the Method can be tested at increasing scale, whilst learning by doing to address adverse effects or cost. Reversibility relates to whether, and how quickly, a trial can be stopped and/or its effects reversed. Reversibility might be scored thus. Major adverse effects cease or substantially decline within: Green <1 month, Yellow 1- 12 months, Red >1 year.
Gating is whether the Method can be tested at increasing scale, whilst learning by doing to address adverse effects or cost. Reversibility relates to whether, and how quickly, a trial can be stopped and/or its effects reversed. Reversibility might be scored thus. Major adverse effects cease or substantially decline within: Green <1 month, Yellow 1- 12 months, Red >1 year.
Risk is used in the Risk Management or risk impact assessment sense of being compared to what would be likely to happen without the intervention. It deals with probabilities and consequences of risk events if they are realised. It compares the products of the likelihood of the risk occurring within a given time (meaning perhaps millennia for climate risks) and its impact. As climate risk is now an existential one that is now happening, our interest lies in determining quickly which Methods have acceptable risks and ones which do not risk the social acceptance of most other interventions. Green means start gated testing urgently now, Yellow means seek ways to reduce likely adverse aspects, Red means research now, but do not deploy more widely unless equivalent Methods are insufficiently effective at cooling.
This refers to the likelihood that existing forms of governance can be enhanced to satisfy the bulk of the global community of the necessity to deploy the more prospective of the Methods, first at local, then national and then international levels. Extensive community engagement is likely to be required, following proof of concept, and explanations of its likely costs, opportunities and effects. Green = (eventually) potentially acceptable and with little downside, Yellow = has some modest downsides, most of which can be offset. Red = social acceptance is unlikely unless other, comparable Methods fail.
As the Effectiveness criterion refers to the developed and globally-scaled cost of direct cooling by the Method in question, this Cost refers more to the RD&D and capital costs of researching, then deploying it at different scales and in different variants, together with the costs of Measuring, Reporting and Verifying (MRV) the results of using the Method, probably by independent bodies. It also includes insurance and recompense costs and the likely cleanup costs afterwards, together with reductions for any revenues gained, including possible carbon and cooling credits, should they eventuate. Green = likely to be profitable, Yellow = requires modest subsidies for industry and NGO participation, Red = would require extensive and ongoing public subsidy. Source TBD.
A summation of the above scores, using Red = 1, Yellow = 3, and Green = 9. Total possible = 99.